“Luhy”的版本间的差异

来自南京大学IIP
跳转至: 导航搜索
   更改可见性
Lhy讨论 | 贡献
   更改可见性
第1行: 第1行:
  
Heng-Yang Lu @ NJUCS
+
Heng-Yang Lu @ NJUCS, hylu@smail.nju.edu.cn
  
 
----
 
----
  
 
+
<span style="font-size:xx-large;">陆恒杨 Heng-Yang Lu</span>
 
 
&nbsp;
 
 
 
=== <span style="font-size:xx-large;">陆恒杨 Heng-Yang Lu</span> ===
 
  
 
<span style="font-size:larger;">PhD Candidate @ LAMDA Group<br/> Department of Computer Science<br/> National Key Laboratory for Novel Software Technology<br/> Nanjing University</span>
 
<span style="font-size:larger;">PhD Candidate @ LAMDA Group<br/> Department of Computer Science<br/> National Key Laboratory for Novel Software Technology<br/> Nanjing University</span>

2017年6月30日 (五) 15:38的版本

Heng-Yang Lu @ NJUCS, hylu@smail.nju.edu.cn


陆恒杨 Heng-Yang Lu

PhD Candidate @ LAMDA Group
Department of Computer Science
National Key Laboratory for Novel Software Technology
Nanjing University


Supervisor


Professor Jun-Yuan Xie and Professor Chong-Jun Wang

Biography


I received my B.Sc. degree in Department of Computer Science and Technology of Nanjing University in June 2014. In the same year, I was admitted to study for a Phd degree in Nanjing University without entrance examination. 

Currently I am a first year PhD student of Department of Computer Science and Technology in Nanjing University and a member of IIP Group, led by professor Jun-Yuan Xie and Chong-Jun Wang.

Research Interest


I am interested in Machine Learning and Natural Language Process. Currently I am focusing on the subfields:

  • machine learning applications
  • topic modoel in short text scenario

Publication

  • Lu H, Xie L, Kang N, Wang C and Xie J. Don't Forget the Quantifiable Relationship between Words: Using Recurrent Neural Network for Short Text Topic Discovery[C]. In Proceedings of AAAI-17. San Francisco, USA, 2017: 1192-1198.
  • Jiang L, Lu H, Xu M and Wang C. Biterm Pseudo Document Topic Model for Short Text[C]. In Proceedings of ICTAI-16. San Jose, USA, 2016: 865-872.
  • Lu H, Li N and Xie J. A Region of Interest Detection Method for Mammography based on Multi-cue Feature Integration[J]. Journal of Nanjing University: Nat Sci Ed, 2016, 52(1): 194-202.
  • Lu H, Chen F, Xu M, Wang C and Xie J. Never Ignore The Significance Of Different Anomalies: A Cost-sensitive Algorithm Based On Loss Function For Anomaly Detection[C]. In Proceedings of ICTAI-15. Vietri sul Mare, Italy, 2015: 1099-1105.