476
个编辑
更改
无编辑摘要
[[File:Z.jpeg|x200px|2017.jpg]]
| style="width: 522px;" |
----
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">I received my B.Sc. degree from Huazhong University of Science and Technology in June 2017. In September 2017 and 2019, I was admitted to study for a an M.Sc. degree and Ph.D. degree in at Nanjing University under the supervision of Prof. WANG Chongjun Chong-Jun Wang without entrance examination, respectively.</span></span><span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;"> Currently, I am a first second-year Ph.D. student of Department of Computer Science and Technology at Nanjing University and a member of IIP Group. I am also one of the members of the international branches of [https://hpi.de Hasso-Plattner-Institut] from Germany (2020- ).</span></span> *<span style="font-family:Times New Roman,Times,serif;"><span style="font-size:larger"><span style="color:#3498db">'''Research Interest'''</span></span></span>
----
----
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">'''Zhang, Y.''', Zeng, C., Cheng, H., Wang, C., & Zhang, L. (2019, July). Many could be better than all: A novel instance-oriented algorithm for Multi-modal Multi-label problem. In ''2019 IEEE International Conference on Multimedia and Expo (ICME)'' (pp. 838-843). IEEE.(Oral presentation)</span></span>
*<span style="font-family:Times New Roman,Times,serif;"><span style="font-size:medium;">'''Zhang, Y.''', Zhang, Z., Cheng, H., Lu, H., Zhang, L., Wang, C., & Xie, J. (2019, November). Win-win Cooperation: A Novel Dual-Modal Dual-Label Algorithm for Membrane Proteins Function Pre-screen. In ''2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)'' (pp. 102-106). IEEE.</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">'''Zhang, Y.''', Shen, J., Zhang, Z., & Wang, C. (2020, August). Common and Discriminative Semantic Pursuit for Multi-modal Multi-label Learning. ''In Proceedings of 24th European Conference on Artificial Intelligence - ECAI 2020 ''(pp. 1666-1673). (Oral presentation)</span style="line-height:normal"></span lang="EN-US">*<span style="backgroundfont-size:whitemedium;"><span style="colorfont-family:#222222Times New Roman,Times,serif;">'''Zhang, Y.''', Shen, J., Zhang, Z., Zhang, L., & Wang, C. (2020, July). Rethinking Modal-oriented Label Correlations for Multi-modal Multi-label Learning. In Proceedings of ECAI ''2020, Accepted</span></span></span></span>International Joint Conference on Neural Networks (IJCNN)'' (pp. 1-8). IEEE. (Oral presentation)</span></span> *<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">'''Zhang, Y.''', ShenZhang, JZ., ZhangZhu, ZY., Zhang , L., & Wang, C.(2020, August). Discriminative Multi-label Model Reuse for Multi-label Learning. In ''Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint International Conference on Web and Big Data'' (pp. 725-739). Springer, Cham. (Oral presentation)</span></span>*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">'''Zhang, Y. Rethinking ''', Shen, J., Zhang, Z., & Wang, C. (2021). Partial Modal-oriented Label Correlations Conditioned GANs for Multi-modal Multi-label Learningwith Arbitrary Modal-Missing.In ''DASFAA (2)'' (pp. 413-428). (Oral presentation)</span style="line-height:normal"></span lang="EN-US">*<span style="backgroundfont-size:whitemedium;"><span style="colorfont-family:#222222Times New Roman,Times,serif;">'''Zhang, Y.''', Shen, J., Yu, C., & Wang, C. (2021). Relation-Aware Alignment Attention Network for Multi-view Multi-label Learning. In Proceedings of IJCNN 2020, Accepted</span></span></span></span> ''DASFAA (2)'' (pp. 465-482). (Oral presentation)</span></span> *<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">'''Zhang , Y.''', Zhang ZShen, J., Zhu Y.Yu, Zhang LC., and Wang , C. Discriminative Multi(2021, July). Label-label Model Reuse for Specific Alignment with Adversarial Multi-label LearningView Representation. In ''2021 IEEE International Conference on Multimedia and Expo (ICME)'' (pp. 1-6). IEEE. (Oral presentation)</span style="line-height:normal"></span lang="EN-US">*<span style="backgroundfont-family:whiteTimes New Roman,Times,serif;"><span style="colorfont-size:#222222medium;">In Proceedings '''Zhang, Y.''', Zhang, Z., Chen, M., Lu, H., & Wang, C. LAMB: A Novel Algorithm of APWebLabel Collaboration based Multi-WAIM 2020, Label Learning. Intelligent Data Analysis. Accepted</span></span>*</spanstyle="font-family:Times New Roman,Times,serif;"></spanstyle="font-size:medium;">'''Zhang, Y.''', Chen, M., Shen, J., & Wang, C. Tailor Versatile Multi-modal Learning for Multi-label Emotion Recognition. In ''Proceedings of AAAI 2022''. Accepted</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Cheng, H., Zhang, L., '''Zhang, Y.''', Wu, J., & Wang, C. (2018, July). Optimal constraint collection for core-selecting path mechanism. In ''Proceedings of the 17th international conference on autonomous agents and multiagent systems'' (pp. 41-49).</span></span>
*<span style="font-family:Times New Roman,Times,serif;"><span style="font-size:medium;">Zeng, C., '''Zhang, Y.''', Lu, H. Y., & Wang, C. J. (2019, July). GADGET: Using Gated GRU for Biomedical Event Trigger Detection. ''In ''2019 ''International Joint Conference on Neural Networks (IJCNN)'' (pp. 1-8). IEEE'''.'''</span></span> '''
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Cheng, H., Zhang, W., '''Zhang, Y.''', Zhang, L., Wu, J., & Wang, C. (2020). Fast core pricing algorithms for path auction. ''Autonomous Agents and Multi-Agent Systems'', ''34''(1), 18.</span></span>
*<span style="font-family:Times New Roman,Times,serif;"><span style="font-size:medium;">Du, Y., Tan, Z., Chen, Q., '''Zhang, Y.''', & Wang, C. (2019). Homogeneous Online Transfer Learning with Online Distribution Discrepancy Minimization. </span></span>''<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">(2020, August)</span></span><span style="linefont-heightfamily:normalTimes New Roman,Times,serif;"><span langstyle="ENfont-USsize:medium;">. Homogeneous Online Transfer Learning with Online Distribution Discrepancy Minimization. </span></span><span style="backgroundfont-size:whitemedium;"><span style="colorfont-family:#222222Times New Roman,Times,serif;">''In Proceedings of 24th European Conference on Artificial Intelligence - ECAI 2020, Accepted ''(pp. 1111-1118).</span></span>*</spanstyle="font-size:medium;"></spanstyle="font-family:Times New Roman,Times,serif;">Zhu, Y., & '''Zhang, Y.''' (2020, July). M3LA: A Novel Approach Based on Encoder-Decoder with Attention Framework for Multi-modal Multi-label Learning. In ''2020 International Joint Conference on Neural Networks (IJCNN)'' (pp. 1-8). IEEE.</span></span>'' *<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Chen, Q., Du, Y., Tan, Z., '''Zhang, Y.''', & Wang, C. (2020,September). Unsupervised domain adaptation with joint domain-adversarial reconstruction networks. ''In Joint European Conference on Machine Learning and Knowledge Discovery in Databases'' (pp. 640-656). Springer, Cham.</span style="line-height:normal"></span lang="EN-US">*<span style="backgroundfont-size:whitemedium;"><span style="colorfont-family:#222222Times New Roman,Times,serif;">Shen, J., '''Zhang, Y.''', Yu, C., & Wang, C. (2020, December). Multi-view Multi-label Learning with Dual-Attention Networks for Stroke Screen. ''In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)'' (pp. 1124-1128). IEEE.</span></span>*</spanstyle="font-size:medium;"></spanstyle="font-family:Times New Roman,Times,serif;">WangLu, H. Y., '''Zhang, Y.''', & Du, CY. (2021). Unsupervised Domain Adaptation with Joint DomainSenU-PTM: a novel phrase-based topic model for short-Adversarial Reconnstructionn Networkstext topic discovery by exploiting word embeddings. ''Data Technologies and Applications''.</span></span> *<span style="linefont-heightfamily:normalTimes New Roman,Times,serif;"><span langstyle="ENfont-USsize:medium;">Chen M., Du Y., '''Zhang, Y.''', Qian, S., </span></span><span style="backgroundfont-size:whitemedium;"><span style="colorfont-family:#222222Times New Roman,Times,serif;">In Proceedings of ECML-PKDD 2020& Wang, AcceptedC.</span></span></spanstyle="font-family:Times New Roman,Times,serif;"></spanstyle="font-size:medium;">Semi-Supervised Learning with Multi-Head Co-Training. In ''Proceedings of AAAI 2022''. Accepted</span></span>
<span style="font-family:Times New Roman,Times,serif;"><span style="font-size:larger"><span style="color:#3498db">'''Rewards or Honors'''</span></span></span>
----
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Excellent Graduate Student of Nanjing University in 2020</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">First Prize of Talent Scholarship, November 2020</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Zhonghui Information Scholarship, December 2019</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Excellent Graduate Student of Nanjing University in 2019</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Excellent Graduate Student of Nanjing University in 2018</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">First-Class class Academic Scholarship, 2018-2019</span></span> *<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">First-Class class Academic Scholarship, 2017-2018</span></span>
*<span style="font-size:medium;"><span style="font-family:Times New Roman,Times,serif;">Outstanding Graduate of Huazhong University of Science and Technology. Wuhan, June 2017</span></span>